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A container of viscous incompressible liquid is bounded by rigid parallel planes and 
rotates steadily about an &xis normal to these planes. A rigid sphere moves steadily 
parallel to the rotation axis and the Rossby and Ekman numbers characterizing the 
motion are both small. The drag on the sphere is calculated in the case when the length 
of the Taylor column is comparable to the axial dimension of the container. Viscous 
effects are allowed for in the boundary of the Taylor column, but the Ekman layers 
on the sphere and on the bounding planes are shown not to affect the drag to leading 
order. The determination of the drag involves solving dual integral equations. This is 
done numerically and, for the limiting cases of long and short containers, analytically. 
The interaction of the Taylor column and the ends of the container leads to an increase 
in the drag over its value in an unbounded fluid, but the increase is smaller than that 
measured by Maxworthy (1970). 

1. Previous work and objectives 
The motion induced by a sphere rising parallel to the axis of a rotating liquid has 

been the subject of several theoretical and experimental investigations. These have 
had as their objective the addition of quantitative detail to the qualitative experi- 
mental and theoretical picture of such flows given in a famous series of papers by 
Taylor (1917, 1921, 1922). 

The most interesting case is when the Rossby number R,, defined by 

R, = ?J/(2~!2), (1.1) 

is small; here U is the velocity of the sphere, 2a is its diameter and !2 is the angular 
velocity of the liquid. I n  this case Taylor showed that the sphere carried with it a long 
column of fluid whose axis is parallel to the rotation axis. However, the steady, 
linearized, inviscid equations used by Taylor possess an infinite number of solutions 
all satisfying the boundary conditions on the sphere and all having a columnar 
structure. 

The first attempt to  remove this indeterminacy is due to Grace (1926), who solved 
an initial-value problem for the inviscid equations 

au/at + 252 x u = - p-'Vp (1.2) 

and div u = 0, (1.3) 
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where u is the liquid velocity, p its density and p the reduced pressure. Grace was not 
able to solve the problem completely, but his analysis suggested that the drag on an 
impulsively started sphere settled down to a steady value in a time comparable to the 
rotation period. A complete discussion was provided by Stewartson (1952), who 
showed that the drag attained the asymptotic value Do, where 

Do = J+pRUa3. (1.4) 

The problem can be looked a t  as one of inertial-wave generation and propagation, 
so that a steady drag is achieved only after the transients have propagated away from 
the vicinity of the sphere. This aspect of the problem was studied by Bretherton 
(1967), who worked out the details for the two-dimensional analogue in which the 
sphere is replaced by a circular cylinder. 

The neglect of viscosity can be legitimate only if the Ekman number E,  defined by 

E = v/(a*R), (1.5) 

is sufficiently small. Here v is the kinematic viscosity. Since, as Stewartson showed, 
singularities develop on the Taylor-column boundary as t -+ co, the neglect of viscosity 
cannot, even then, be uniformly valid in the flow field. 

This suggests an alternative approach, which retains the viscous terms in the 
governing equations, but treats the motion as steady. Thus (1.1) is replaced by 

252 x u = -p-’Vp + vv2u. (1.6) 

This approach derives from the work of Morrison & Morgan (1956) and W. S. Childress 
(unpublished) and is discussed by Moore & Saffman (1969, hereafter referred to as I). 

The Taylor column has a long but finite length O(aE-l) and within the Taylor 
column the swirl velocity is O( V). Thus the Ekman suction velocity, which is O( UEi), 
is negligible and the problem can be discussed in terms of an approximation to (1.6) 
in which axial derivatives are neglected. To leading order, the drag arises from the 
pressure difference between the fore and aft Taylor columns and proves to agree with 
Stewartson’s result (1.4). 

The problem was studied experimentally by Maxworthy (1970), who released small 
buoyant spheres of diameters gin. and gin. in a rotating tank of water of depth 
5 ft, the dimensions being chosen to make the effects of the ends of the tank as small 
as feasible. For small values of R, Maxworthy found that the drag was higher than that 
given by Stewartson by a factor of nearly two, even after an empirical end-wall 
correction had been included. This discrepancy must cast doubt on the applicability 
of the linearized theories and its importance has been stressed recently by Barnard 
& Pritchard (1975), who provide a valuable set of comparisons between linearized 
theory and experiment. 

Examination of Maxworthy’s results shows that the parameter defined by 

6 = h E / 2 ~ ,  (1.7) 

which is the ratio of the depth h of the cylinder to the Taylor-column height 2aE-1, 
is actually as small as 0.2 for the data on which the discrepancy is based.? This suggests 

t A precise definition of the length of the Taylor column is the largest distance from the 
sphere at which the liquid velocity on the axis is equal to the speed of the body. Barnard & 
Pritchmd (1075), using the results of I, obtain the value 5 . 2 6 ~  10-2oE-1, which is in good 
agreement with the value 5.88 x 10-2aE-1 derived from Maxworthy’s experiments. 
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that it  would be of interest to calculate the effect of end walls on the drag, to see if they 
could have an effect comparable to that observed by Maxworthy. 

We attempt this calculation in the present paper. The calculation of I is repeated 
with rigid planes at right angles to the axis of rotation. Axial derivatives are again 
dropped from the governing equation (1.6) and the Ekman layers on the end walls and 
sphere are neglected. Thus the upper end wall could equa,lly be a free surface, as 
far as our theory is concerned. The neglect of Ekman suction restricts the analysis 
to containers for which h + aE-4 and there is thus no overlap with the analysis of 
Moore & Saffman (1968) for h -4 aE-4. We neglect the effect of the sides of the con- 
tainer and treat the liquid as radially unbounded. The dual integral equations treated 
in I are replaced by a more complicated pair which have, in general, to be solved 
numerically. 

The dual integral equations are derived in $ 2 and Tranter’s method (1971, p. 111) 
is used to convert them to an algebraic system in $ 3 .  Approximate solutions are 
possible when 6 + 1 and when S < 1 and these limits are explored in §Q 4 and 5 
respectively. 

Finally, in $6,  we look at the comparison with Maxworthy’s results. 

2. The derivation of the dual integral equations 
In  this section we derive the equations and boundary conditions determining the 

motion and show how they reduce to dual integral equations. 
We use cylindrical polar co-ordinates ( r ,  0, z )  whose origin is at  the centre of the 

sphere and whose axis is parallel to the axis of rotation. The fluid is bounded by rigid 
infinite flat plates a t  z = h, and z = - h,, where h, + hB = h, the length of the con- 
tainer.t The plates rotate with angular velocity R so that the undisturbed state of 
the fluid is one of rigid rotation. 

Outside Ekman layers on the sphere and end plates, z derivatives are unimportant, 
so that the equations of motion (1.6) can be approximated by 

while continuity requires 
i a  aw 
- - (ru)+% = 0. 
r ar 

Here (u, v, w) are the velocity components in the ( r ,  0, z )  directions. We are able to use 
steady equations even though the flow field changes as h, and hB vary because the 
sphere moves for O(R, a/h)  rotation periods before a significant change of configura- 
tion occurs. The neglect of the viscous force in the radial momentum balance (2.1) 
was justified in I and the’argument need not be repeated here. The full r dependence 

t As in I, we denote z > 0 by T and z < 0 by B. 
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of the viscous force in (2.2) and (2.3) is retained because the Stewartson layer a t  the 
Taylor-column boundary can be of thickness comparable to the sphere radius a.  

If it  turns out that the solution has a swirl velocity O( U )  then the Ekman suction 
velocity will be O( UE3) and can be neglected id formulating the boundary conditions 
which become 

w = O  on z + h T  ( O < r < c o ) ,  (2.5) 

w = O  on z = - F ,  ( O < r < o o )  (2.6) 
and 

w =  U on z =  + O  ( O < r  < a ) ,  

u, v, w continuous across z = 0 (a < r < a). (2.7) 

We have transferred the boundary conditions on the surface of the sphere to z = 0 
because the velocity field does not vary significantly with z on the scale of the sphere. 
Note that we have not specified the angular velocity of the sphere, because an angular 
velocity of order SZR, relative to the rotating frame would produce an Ekman suction 
of order UE* and we are neglecting velocities of this order of magnitude. I n  Max- 
worthy's experiments the angular velocity would be determined by the condition that 
the sphere was subject to zero torque. 

It can easily be verified that 

v(r, 2) = Jl(kr) { a ( k )  exp (&v,Q2-lk3z) + P ( k )  exp ( -  &&-'k3z)}dk (2.8) 
/om 

and J,(kr) { a ( k )  exp (*ufi-lk32) - P ( k )  exp ( -  &d-1k3z ) )dk  (2.9) 

are solutions of the equations of motion (2.1)-(2.4) for arbitrary weighting functions 
a ( k )  and P ( k ) .  However, the velocity field is not analytic across z = 0 because of the 
presence of the sphere so we must use weighting functions a,(k) and PT(k)  for z > 0 
and a,(k) and P,(k) for z < 0. 

The problem is thus to calculate the four weighting functions. Since the boundary 
conditions (2.5) and (2.6) hold for all r ,  we have immediately 

a,(k) exp (QvSZ-lk3hT) - P T ( k )  exp ( - &vSZ-lk3hT) = 0 

a,(k) exp ( -  $vLR-lk3h,) -PB(k) exp ( Q V S Z - ~ ~ ~ ~ ~ )  = 0. 

(2.10) 

(2.11) 
and 

Moreover, w is continuous across z = 0 for all r ,  so that 

a,(W - P T W  = UB(k) - P B W  (2.12) 

We can use (2.10)-(2.12) to reduce the number of unknown functions to one. 
A quantity of physical interest is the difference in swirl velocity between the upper 

and lower surfaces of the sphere, because the drag force can be expressed in terms of 
this difference. Now 

J O  

and this suggests that we work with a new unknown y ( k )  defined by 

Y ( k )  = a&) -%@) +PTW - P B ( 4 .  (2.13) 
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We now find that the conditions on z = 0 lead to 

[ 1 - exp ( - vQ-lh, k3)]  [ 1 - exp ( - vQ-lh, k3)]  
1 - exp ( - vQ-* hk3) 

dk = - 2 U (0 < r < a )  

and( j: y ( k )  Jl(kr) dk = 0 (r  a) .  

If we use the identity 
d [rJl( kr ) ] / d r  = krJ,( kr ), 

we can change the Bessel function in the first equation to one of order unity. Then, 
if we introduce dimensionless variables through the equations 

u = ka, -2aUA(u) = y ( k ) ,  s = ru-l) (2.14) 

we get 

and 

where 

lom u-lA(u) A(u) J1(us) du = 4s (0 < s < 1)) (2.15) 
- -  

jom A(u) J,(us) du = 0 ( 1  < s), 

[ 1 - exp ( - 6, us)] [ 1 - exp ( - 6, us)] 
A(u) = 

-exp [ - (6, + 6,) u3] 

(2.16) 

(2.17) 

and where ST = %,/a and 6, = Eh,/a. Thus 6, and 6, are O( 1 )  in the case considered. 
It can be shown that the drag D on the sphere is given by 

r2{v(r, 0 + ) - v(r, 0 - )> dr,  

(Moore & Saffman 1968)) so that 

D = 4nQpa3 U lo1 s2 lom Jl(us) A (u) du ds. (2.18) 

It is worth noting that A(u) is symmetric in 6, and S,, so that A(u) and hence D have 
the same symmetry. Thus the drag correction due to the end plates is an even function 
of the distance of the sphere from the mid-point of the apparatus. This is a consequence 
of the linearity of the governing equations: the effect of an end wall cannot depend 
on whether the sphere is approaching or receding. In 'future (and without loss of 
generality) we assume 6, < 6,. 

In (i 3 the solution of (2.15) and (2.16) is reduced to an infinite system of algebraic 
equations by Tranter's method (197 1, p. 11 1). 

3. Reduction to algebraic equations 

pair, equation (2.16), is satisfied for all a,  by the series 
The key step in Tranter's method is the recognition that the second equation of the 

m 

= c ~ m j 2 , + 1 ( ~ ) 9  13.1) 
m=O 

wherej, denotes the spherical Bessel function of order n. This follows from the result 
(Watson 1958, p. 404) 

ni(m + l ) !  
S ( ~ - S ' ) - - ) F , ( $ , ~ , S ' )  ( S  < l),  ( 3 . 2 ~ )  

jomUj2m+l(u)J1(US)dU = n m +  8) I 0 (8 > 11, (3.2b) 
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where F, denotes the Jacobi polynomial. Thus the problem is to  determine the 
coefficients a,, such that the first equation of the pair, equation (2.15)) is satisfied. 

If we substitute the expansion (3.1) into (2.15) and invert the order of summation 
and integration, we find 

a,~omA(u)j,,l(u)Jl(u~)du = 8s (0 < 8 < 1). (3.3) 

The problem is to convert this equation into an infinite system of algebraic equations 
for the a, and Tranter showed how this could be accomplished. He pointed out that  
(3.2) furnishes the Hankel transform of j2m+l, so that inverting (3.2) gives 

nt(m+ 1 s2( 1 - s2)-4F,(#, 2, s2) Jl(us) ds. j 2 , + 1 ( ~ )  = 
r ( m + : )  0 

(3.4) 

So if we multiply (3.3) by the function s2( 1 - s2)-#Fn(#, 2, s2) and integrate from 0 to  
1 we shall get 

Use of the orthogonality relations satisfied by Jacobi polynomials (Magnus & Ober- 
hettinger 1954, p. 83) shows that the right-hand side of (3.5) vanishes unless n = 0, 
when it  has the value 4. Thus the infinite system can be written 

5 a m  1 ~ ( U ) j 2 r n + l ( U ) j 2 n + l ( U )  du = 480, n ,  (3.6) 
m-0 0 

where Sp,q is the Kronecker delta. 
The integral will be evaluated numerically. However, A(u)  -+ 1 and j2m+l j,,,, is 

O ( U - ~ )  as u-+ 00, so that convergence would be slow a t  the upper limit. To improve the 
convergence, we note that 

A(u) - 1 N exp [ - (S, + SB)u3] -exp ( -S,u3) -exp ( -SBu3) 

as u 3 00, while 

Thus the infinite system of algebraic equations can be rewritten in the form 

where (3.9) 

The integral defining I,,, ~ is easily evaluated numerically. 

use of some standard results shows that 
Once the coefficients a, have been found, the drag can be calculated and, in fact, 

D = +pa Ua3ao. (3.10) 

As a check on this result, we observe that as ST and 8, become infinite, corresponding 
to the unbounded case, A(u) - 1 tends to 0, for u 9 0. Thus I,,, = 0 for the unbounded 
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case and all the off-diagonal terms in (3.8) vanish; the solution is simply a,, = 2/77, 
a, = a,2 = . . . = 0. Thus D = JZpQ Ua3, in agreement with the result for an unbounded 
region. 

For values of ST which are not small (recall that we have restricted ourselves to 
6, < 6,) we can show t,hat the off-diagonal elements I,,, tend rapidly to zero as either 
m or n or both tend to infinity. To see this we note that, in view of Poisson's integral 
(Abramowitz & Stegun 1964, p. 483),  

Ij,(u)l < un7r/(2,+ln!), 

if u is reaI and positive. Hence 
772 

(1 - A ( u ) )  ~ ~ ~ + ' n + ' d ~ .  
lrm~nl ' (2n+ l)! ( 2 m +  I ) !  22m+2n+3/0m 

But if 6, < S,, as we are assuming, 

1 - A(u)  < 2 exp ( - 6, u3), 

n21?($m++z+ I )  
I L ~ '  < 3(2n+ I ) !  (2m+ I ) !  22n+2m+26,3m++n+I' 

so that 

from which the smallness of the off-diagonal elements follows. 
Since the off-diagonal elements decay so rapidly as we leave t'he main diagonal, 

we expect that  replacing the infinite system (3.8) by an N x N system will produce 
an accurate solution for a,, even for modest values of N .  We examine this point in 3 6. 
Furthermore, we can see that all the off-diagonal elements will be small if 6,$ 1, so 
that an approximate solution of the infinite system can be found in this case. We 
determine this solution in $4.  

4. Approximate solution for a long container 
I n  this section we examine the approximation which becomes possible when 

6, > 1. This means that the parameter 6 defined in (1.7) is large, so that the end walls 
have only a small effect on the flow. 

The analysis is similar to that given by Tranter (1971, p. 119) for a parallel-disk 
condenser with a large gap. For simplicity, we consider first the case 6,. = 6, so that 

6, = 6, = 6 = h E / 2 a ;  

A(u) - 1 = - 2 / [ 1 +  exp (6u3)]. 

(4.1) 

thus the sphere is midway between the end plates. The function A(u) - 1 now simplifies 
to 

(4.2) 

If we substitute the integral representation 

into the definition of I,,, we get, after expanding the Bessel function as a power series 
and carrying out the q5 integration, 



788 

where v = j ( m + n + ~ ) +  1 and 
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The integral in (4.3) can be expressed as a Riemann zeta function so we get 

where [(v) (1 - 2l-”) must be replaced by its limiting value In 2 when v = 1. 
We have thus expressed Im,n as a power series in S-3 and consequently we can find 

approximations to when 6 9 1.  Moreover I,,, is 0(&3(m+n)-1), so that  the off- 
diagonal elements in the infinite system (3.8) are small and i t  can easily be solved 
approximately. We find that for n 2 1 

an = 0(6-)”-1) (4.6) 

and that ao(&r+Io,o) = ++0(6-’~*). (4.7) 

Thus, recalling (1.4) and (3.10), we have 

0.09806 0.02092 0.002459 0*0002159 -’ ) +0(6-?). (4’.8) 

This result confirms that the drag is increased by the presence of the end walls, 
although the smallness of the coefficient of 6-f shows that the effect is not as large 
as might have been anticipated. 

Finally we return to  the general case, 6, =+= S,, to  see how the drag correction is 
affected by the position of the sphere. If 6,/6B is O( 1)  we can evaluate to leading 
order and we find 

D 
+ 63 

- = (l-- +-- 6 )  DO 6 6% 

where $ is the logarithmic derivative of the gamma function and C is Euler’s constant. 
This result reveals that  the effect of the position of the sphere is not large, the correction 
being increased by about 30 yo when &,/a, = 0.5 and by about 80 % when 6,/6, = 0.25. 
The drag is least in the symmetric position and in fact this proves to be true for all 
values of 6. 

I n  the next section we consider the opposite limit in which 6, and 6, are small. 

5. Approximate solution for a short container 
By a ‘short’ container in the context of this problem we mean merely that h < aE-l. 

In  fact it will emerge that we must have h aE-4 in order that  the Ekman layers can 
be neglected, so that h 9 a still. 

Examination of (4.4), which holds for 6, = 6, (=6 ) ,  reveals that, for 6 < 1 ,  the 
off-diagonal elements in the infinite system (3.8) becomes smaIl only at large values of 
m and n. This behaviour can be shown to persist for 6, < S,, so that the truncated 
system has to be made large when 6 is small. Thus we must precede differently in this 
case. 
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If we examine the definition of A(u) given by (2.17), we can see that, when u is 

(5.1) 

O( 1) and ST and 13, are both very small, 
&T &I3 A(u)  - ___ ~ 3 .  
ST + 8, 

This approximation fails when u is large enough to make u36B of order unity, but if 
we assume that important contributions to the integral in (2.15) come from finite 
u, we can replace A(u)  by its approximate form (5.1) in the first of the dual integral 
equations. 

The resulting pair are of the type solved by Titchmarsh (1937, p. 337) and we find 

1 
= - -+- J3(u),  8u (:, B,) 

with a corresponding drag D given by 

We can also work out the velocity field, and (as in I) denoting the interior of the upper 
Taylor column by T, the interior of the lower Taylor column by B and its exterior 
by E ,  we get 

(5.4) 

Now if the Ekman suction is to be negligible, we must have vE: < 217, so that (recalling 
ST < SIj )  we must have 

EB/S, < 1 .  

This condition will be secured if h $ aE-k, provided that f?T/dB is not small. 

conditions 
The velocity field (5.4) is not analytic across r = a and satisfies instead the jump 

I v continuous across r = a, 

( 5 . 5 )  

These are exactly the jump conditions a t  a Stewartson Ef layer, as was shown in I 
by a generalization of Stewartson's (1966) argument. The E* layer is thin because 
h < aE-I while, because h + aE-4, the E4 layer occiipies the whole of the interior 
of the Taylor column, a situation envisaged in I. In fact, the solution (5.4) can be 
obtained directly once the structure of the flow is recognized, but we shall not give 
the details. 

The Ef layer can be determined exactly as in I, the solution (5.4) yielding the 
constants d);), d;? and d(l)  occurring in equations (5 .35 ) ,  (5.36) and (5.37) of I. The 
velocity in the shear layer is O(E4) because the layer is merely removing a discontinuity 
in the derivative of the swirl velocity. 

We shall not work out the details of the E* layer here, but we shall draw attention 
to the most important feature. The analysis of I shows that the swirl velocity in the 
shear layer tends to zero as the boundary-layer variable ( r -a)E-*  tends to plus 
infinity, but tends to non-zero vidiics as ( r  - ( I )  E-f tends to miniis infinity, the values 
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s 
10.0 
6.0 
4.0 
2.5 
1.5 
1 *o 
0-6 
0.4 
0.25 

DID, computed 

1.00947 
1.0156 
1.0231 
1.0364 
1.0694 
1.0873 
1.1411 
1.2060 
1.3183 

DID, from (4.8) 

1.00946 
1.0166 
1.0231 
1.0362 
1.0589 
1.0862 
1.1383 

1.3024t 
1.2000t 

DID, from (5.7) Difference x sf 
0.006 9.144 7.573 0.286 
0.004 12.440 10.699 0.276 
0.0025 18.033 16.060 0.268 
0-0015 27.410 25.137 0.260 
0.00 1 38.593 36.042 0.266 

TABLE 1. Comparison, in the case 6~ = 6~ = 6, of DID, computed using the truncation method 
with the approximate solutions (4.8), valid for 6 & 1, and (5.7), valid for 6 Q 1. Shanks’s trans- 
formation was used in the entries distinguished with t .  

being different in T and B. This implies that an O(E+) correction must be added to 
the solution (5.4); this correction can be shown to take the form of a rigid rotation. 

The rotation rates are different in T and B, so that there is an O(E+) correction to the 
drag formula (5.3). The calculation is straightforward and only the final result will 
be given, which is 

12y(4) (Sh +Sh - ( 2 S ) f )  + . . . (5.6) 

This result enables us to find D a t  values of S for which the truncation method fails. 
However it is practically useful only a t  very small values of 6. When 6, = 8, we find 
that 

D n  
&, - 1286 

-- (1+4-685 ...sQ+...) (5.7) 

and the correction term is not small even when 6 = 0.001. A comparison of (5.7) 
with the results obtained by the truncation method is given in $6,  which describes 
our results and compares them with Maxworthy’s experiments. 

6. Results and comparison with experiment 
The infinite system of equations (3.8) was solved approximately by replacing it by 

an N x N system. Spherical Bessel functions of orders up to 29 were available in a 
library subroutine, so the largest value of N we could use was 14. To see whether this 
was large enough we compared the values of a,, computed with N = 5 with those 
computed with N = 14. When S, = 8, = 6 we found no significant difference for 
6 = 10.0, 1.0 and 0.1 and only a difference of 0.003 yo when S = 0.001. 

The comparison between the computed results and those obtained from the approxi- 
mate formulae for S 1 and 6 < 1 are shown.in table 1. Evidently (4.8) is a good 
approximation even when S is as small as 1.0. However, as we anticipated in $5, 
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FIGURE 1 ,  Estimated effects of Ekman suction and nonlinearity 
in the shear layers on Maxworthy’s data. 

R = Ua/v 

(5.7) is not a good approximation even when 8 = 0.001. The results are consistent 
with the next term in the expansion being proportional to 8-4, as is shown in the last 
column of the table. 

Before we compare our predictions with Maxworthy’s experiments we must obtain 
the conditions under which our theory is valid. 

In  the linear theory itself we have neglected the effect of Ekman suction and, as we 
saw in 0 5 ,  this requires B < 1, where 

B = aE-i/h. (6.1) 

The linear equations will be valid provided the appropriate Rossby number is small. 
In  the Stewartson shear layer both velocities and velocity gradients are larger than 
in the rest of the flow. When 8 = O( 1)  the velocities are O( UE-0) in a layer of thickness 
O(aE*), so that the local Rossby number is 

R ,  = R, E-4. (6.2) 
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414‘ 

3.0 4’: 

0.0 I 0. I 

6 

I .o 

FIGURE 2. Comparison of theoretical (I, 8~ = aB; 11, 8~ = &?B) drag ratio D/D, withMaxworthfs 
(1970) experiments. The values of R, at the labelled points are (a) 0.06, (b) 0.10, (c) 0.15, ( d )  
0.29, (e) 0.08, (f) 0.22, (9) 0.19, (h)  0.25, (i) 0.27, (j) 0.23, (k) 0.18 and (1) 0.25. In each column 
of points the drag ratio decreases as Rs increases, with the exception of the value for the point (f ). 

Since the shear layer get thinner and the velocities larger near the equator of the 
sphere in the unbounded case, as we can see from I, nonlinear effects are likely to be 
stronger there. However, we shall ignore this complication at  present and merely 
require R ,  + 1.  This condition is not changed when S < 1, provided h 9 aE-1, as we 
have assumed throughout 

We can now examine Maxworthy’s data with these restrictions in mind. Maxworthy’s 
results show that, roughly, 

C D  = 2/R0. 

If we adopt this formula and the representative value h/a = 100, we can, with 
sufficient accuracy for the purpose of a survey, place the lines B = constant and 
R ,  = constant on Maxworthy’s plot of the drag coefficient C, as a function of the 
Reynolds number Uav-1. The results are shown in figure 1.  Evidently Ekman-suction 
effects are, on the present estimate, not large for his data whereas nonlinear effects 
can be expected to affect the bulk of his results. 

We have used these estimates to select data to compare with our theory, the points 
chosen being those above the line R ,  = 0.3. (Professor Maxworthy kindly made 
available the original of his figure and we obtained the data from this,) Maxworthy 
measured transit times of his freely rising spheres, so that his velocities are averages. 
However, he has told us that 0.43 < hT/hB < 1.33 in his measurements, so that, if 
our theory is right, the measured drag should lie between our predicted values for 
hT/hB = 1 and hT/hB = 0.43. 

In figure 2 we show a comparison of our theory and Maxworthy’s data. The two 
curves show the dependence of the drag ratio DID, on S for 

hT/hB = 1 and hT/hB = 0.33. 
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The effect of position is not large in the range of interest. 
The agreement is poor and we believe that the end-wall effect is responsible for only 

part of the discrepancy between Stewartson’s prediction for an unbounded region and 
experiment. 

We stress that our theory fails in two respects. 
The drag ratio inferred from Maxworthy’s data is not just a function of S and 

h,/h,, because the spread of points at given 6 is too large to be accounted for by 
position effects. Nor is the spread due to  experimental scatter. At any S the drag 
ratio DID, decreases with increasing R,, suggesting that nonlinear effects are present. 

The drag ratio at -the smallest R, is systematically higher than that predicted by 
our theory. The reason for this discrepancy is not known. It is clear from figure 2 that 
the discrepancy is becoming constant as 6 increases, i.e. as the end walls recede, which 
suggests that  a t  the same Ekman number a similar discrepancy would be present in 
unbounded flow. 
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